
Elastic response of an acoustic coating on a rib-stiffened plate

Andrew J. Hull �, John R. Welch 1

Autonomous and Defensive Systems Department, Naval Undersea Warfare Center Division, Newport, RI 02841, USA

a r t i c l e i n f o

Article history:

Received 8 April 2009

Received in revised form

7 April 2010

Accepted 9 April 2010

Handling Editor: L. Huang

a b s t r a c t

This paper develops a three-dimensional analytical model of a fluid-loaded acoustic

coating affixed to a rib-stiffened plate. The system is loaded by a plane wave that is

harmonic both spatially and temporally. The model begins with Navier–Cauchy

equations of motion for an elastic solid, which produces displacement fields that have

unknown wave propagation coefficients. These are inserted into stress equations at the

boundaries of the plate and the acoustic coating. These stress fields are coupled to the

fluid field and the rib stiffeners with force balances. Manipulation of these equations

develops an infinite number of indexed equations that are truncated and incorporated

into a global matrix equation. This global matrix equation can be solved to determine

the wave propagation coefficients. This produces analytical solutions to the systems’

displacements, stresses, and scattered pressure field. This model, unlike previously

developed analytical models, has elastic behavior and thus incorporates higher order

wave motion that makes it accurate at higher wavenumbers and frequencies. An

example problem is investigated for three specific model results: (1) the dynamic

response, (2) a sonar array embedded in the acoustic coating, and (3) the scattered

pressure field. An expression for the high frequency limitation of the model is derived.

It is shown that the ribs can have a significant impact on the structural acoustic

response of the system.

Published by Elsevier Ltd.

1. Introduction

Underwater vehicle hulls are typically metallic with acoustic coatings that are made of a soft polymer material. These
hulls are usually internally reinforced in one direction to provide increased stiffness against the hydrostatic forces that act
on the hull when the vessel is submerged. Acoustic coatings are used to produce quieter vehicles, contain sonar sensors,
inhibit drag, and prevent biological fouling on the exterior of the vehicle. Understanding the structural response of such a
system is important for the design of new underwater vehicles and analysis of existing underwater vehicles. An analytical
model with this type of configuration will allow predictions of the dynamic response of an acoustic coating on a marine
structure and a sonar system embedded in the coating. Over the years there has been a progression of modeling these
systems, from thin unreinforced structures to thick unreinforced structures and thin reinforced structures. The specific
problem of an analytical model of a thick reinforced structure has not been previously addressed.

The research of plate theory has been an ongoing field of study for many years. Thin beam (Euler–Bernoulli) theory
originates in the eighteenth century [1]. This model is sometimes called a flexural wave model, and an extremely similar
model exists in plate theory. Mindlin [2] modified thin plate theory to include the dynamics of rotary inertia and shear
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effects, and this extended the low frequency and wavenumber region of the model. Analysis of wave propagation in fully
elastic plates consisting of one or multiple layers using the Navier–Cauchy equations of motion has been studied
extensively and is well documented [3]. Fluid loading has been added to thin plate analysis [4] and thick plate single and
multilayer analysis [5]. Using these techniques, the dynamic response of fluid-loaded acoustic coating on an unreinforced
plate can be calculated and analyzed for both thin and thick structures.

Over the years, thin plate theory has been expanded to include stiffening effects of ribs that are typical of many marine
and aviation structures. These ribs are almost inclusively placed on one side of the plate to reinforce the structure.
The response of a periodically supported beam to a load with fixed wavenumber and frequency has been investigated [6].
The response of periodically stiffened fluid-loaded plates to harmonic loading [7] and line and point forces [8] has been
established. The problem of aperiodicity in the stiffeners has been solved [9]. This problem was also investigated for a finite
number of equally spaced stiffeners [10] and randomly spaced stiffeners [11]. Asymptotic models of plate radiation into
fluid fields have also been developed [12]. The problem of an arbitrary number of dissimilar ribs which are randomly
spaced has been solved [13]. A model of radiation of sound from a reinforced plate subjected to a line load has been
developed [14]. In this paper, the author incorporated the size of the ribs into the analysis of the radiated sound field.
Sound radiation from a plate reinforced by infinite sets of orthogonal ribs has been studied [15]. A similar problem with
doubly periodic orthogonal ribs has been studied with respect to the diffraction of an incoming plane wave [16]. It is noted
that these papers with reinforcing ribs [6–16] use some form of thin plate theory, and the resulting frequency limit where
the model assumptions are valid depends on the thickness of the plate, but for most plates it is typically in the hundreds of
Hertz. These thin plate theories are based on a single flexural wave traveling in the plate, and do not include the dynamics
of higher order wave motion.

The acoustic response of a fully elastic cylindrical shell with a complete acoustic coating has been researched [17] as
well as that of a cylindrical shell with a partial acoustic coating [18]. Rib effects are not present in either of these papers.
Higher frequency analysis is possible using numerical methods such as finite element analysis [19]; however, these
computations can be time consuming and frequently have stability problems when Poisson’s ratio of the coating material
approaches one half. Recently, a fully elastic solution to a thick plate containing discrete masses was developed [20].
This method can be extended to model the behavior of an acoustic coating on a ribbed backing plate.

This paper derives an analytical model of a reinforced elastic plate system. This model was specifically developed so
that this system could undergo analysis at higher wavenumbers and frequencies. Previously, only the low wavenumber
and low frequency region of this system was available for analytical modeling. This is of interest because many sonar
systems operate at frequencies well above the limits of flexural wave dynamics and if the structure is reinforced,
traditional thick plate theory does not include the dynamics of the stiffeners. If the system has fairly rigid stiffeners, then
their effects must be incorporated into the model. The work here was developed so that the structural acoustic analysis of
underwater vehicles could be accomplished at elastic wavenumbers and frequencies using an analytical model.

The modeled system consists of a plate in contact with a fluid-loaded acoustic coating on one side and a series of
equally spaced ribs on the other side. The structure is loaded via the fluid with an incoming acoustic wave. The plate and
the acoustic coating are modeled as three-dimensional fully elastic solid bodies, the fluid is modeled as a three-
dimensional acoustic field, and the ribs are modeled using the Timoshenko beam equation, the torsional wave equation
and the bar wave equation. The formulation begins with elasticity theory where the motion in the plate and the acoustic
coating are modeled as a combination of dilatational and shear waves. These waveforms can be used to determine the
three-dimensional displacement fields with unknown coefficients. These displacements are inserted into stress and
continuity equations at the system boundaries and interfaces that contain the system excitation, the fluid loading, and the
force of the ribs on the structure. Using an orthogonalization procedure produces an m-indexed mathematical model of the
system where each m index is a set of equations 12 rows by an infinite number of columns. All of the m-indexed equations
can be combined and this yields a matrix system of infinite extent, which is truncated to a finite number of terms. Inverting
this matrix solves for the unknown coefficients and produces system displacements, stresses, and pressure field solutions.
The elastic model is compared to a previously developed thin plate model at low frequency and wavenumbers to insure
accuracy and consistency to prior work. A numerical example problem is then studied with specific interest in dynamic
response of the structure, reception of acoustic signals and strength of the scattered field. The frequency limitation of the
new elastic model is discussed. It is shown that the ribs can significantly affect the system response.

2. Governing equations

The system model is that of a fluid-loaded solid layer, called the acoustic coating, in contact with a rib-stiffened solid
layer, called the backing plate, as shown in Fig. 1. This problem is analytically modeled by assuming the pressure in the
fluid is governed by the acoustic wave equation, both solid layers are governed by fully elastic equations of motion, and the
rib stiffeners are modeled using the Timoshenko beam equation for the bending motion, the torsional wave equation for
the twisting motion, and the bar wave equation for the longitudinal motion. The acoustic coating is excited on the top
surface with an incoming acoustic wave. The ribs on the bottom of the backing plate are equally spaced at a distance of L in
the x-direction. The model uses the following assumptions: (1) the excitation or forcing function acting on the plate is a
plane wave at definite wavenumbers in the x- and y-directions and frequency in time, (2) the displacement in both plates is
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three-dimensional, (3) both plates have infinite spatial extent in the entire x- and y-directions, (4) the fluid medium has
infinite spatial extent in the entire x- and y-directions and infinite spatial extent in the positive z-direction, (5) the interface
of the acoustic coating and the backing plate have equivalent displacements and stresses, (6) the motion of the ribs is
independent in three directions and is composed of twisting along the y-axis, extension in the y-direction, and bending in
the z-direction, and (7) the particle motion is linear, and (8) the fluid medium is lossless.

The motions of both the backing plate and the acoustic coating are governed the Navier–Cauchy equations of motion
written in vector form as

mr2uðx,y,z,tÞþðlþmÞrr � uðx,y,z,tÞ ¼ r @
2uðx,y,z,tÞ

@t2
, (1)

where r is the density, l and m are the (usually complex) Lamé constants, t is time, � denotes a vector dot product,
and u(x,y,z,t) is the three-dimensional Cartesian coordinate displacement vector. Using standard techniques [21] to solve
Eq. (1) and incorporating the periodicity of the system [6] into the solution yields the displacements as

ujðx,y,z,tÞ ¼
Xm ¼ þ1

m ¼ �1

UðjÞm ðzÞ expðikmxÞ expðikyyÞ expð�iotÞ, (2)

vjðx,y,z,tÞ ¼
Xm ¼ þ1

m ¼ �1

V ðjÞm ðzÞ expðikmxÞ expðikyyÞ expð�iotÞ, (3)

and

wjðx,y,z,tÞ ¼
Xm ¼ þ1

m ¼ �1

W ðjÞ
m ðzÞ expðikmxÞ expðikyyÞ expð�iotÞ, (4)

where

km ¼ kxþ
2pm

L
, (5)

where kx is wavenumber with respect to the x-axis, ky is the wavenumber with respect to the y-axis, o is frequency,
t is time, i¼

ffiffiffiffiffiffiffi
�1
p

and j is either 1, which corresponds to the backing plate or 2, which corresponds to the acoustic coating.
The functions UðjÞm ðzÞ, V ðjÞm ðzÞ, and W ðjÞ

m ðzÞ are given by

UðjÞm ðzÞ ¼ AðjÞm ikm cos½aðjÞm z�þBðjÞm ikm sin½aðjÞm z�þCðjÞm

kmky

bðjÞm

sin½bðjÞm z��DðjÞm

kmky

bðjÞm

cos½bðjÞm z�

þEðjÞm bðjÞmþ
k2

y

bðjÞm

" #
sin½bðjÞm z��FðjÞm bðjÞmþ

k2
y

bðjÞm

" #
cos½bðjÞm z�, (6)

V ðjÞm ðzÞ ¼ AðjÞm iky cos½aðjÞm z�þBðjÞm iky sin½aðjÞm z��CðjÞm bðjÞmþ
k2

m

bðjÞm

" #
sin½bðjÞm z�þDðjÞm bðjÞmþ

k2
m

bðjÞm

" #
cos½bðjÞm z�

�EðjÞm

kmky

bðjÞm

sin½bðjÞm z�þFðjÞm

kmky

bðjÞm

cos½bðjÞm z� (7)
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and

W ðjÞ
m ðzÞ ¼ �AðjÞma

ðjÞ
m sin½aðjÞm z�þBðjÞma

ðjÞ
m cos½aðjÞm z��CðjÞm iky cos½bðjÞm z��DðjÞm iky sin½bðjÞm z�

þEðjÞm ikm cos½bðjÞm z�þFðjÞm ikm sin½bðjÞm z�, (8)

where aðjÞm is the modified wavenumber associated with the dilatational wave and is expressed as

aðjÞm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kðjÞd �

2�k2
m�k2

y

q
, (9)

where kðjÞd is the dilatational wavenumber on the layer (j) and is equal to o=cðjÞd , where cðjÞd is the dilatational wave speed on
the layer (j); bðjÞm is the modified wavenumber associated with the shear wave and is expressed as

bðjÞm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kðjÞs �

2�k2
m�k2

y

q
, (10)

where kðjÞs is the shear wavenumber on the layer (j) and is equal to o=cðjÞs , where cðjÞs is the shear wave speed on the layer (j).
The dilatational wave speed is given by

cd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ2m
r

s
(12)

and the shear wave speed is determined by

cs ¼

ffiffiffiffi
m
r

r
: (13)

If the model of the layers of the structure contain a structural loss factor, then the dilatational and shear wave speed are
complex quantities as are the modified wavenumbers a and b. (Structural loss factors are typically used to model acoustic
coatings and sometimes used to model metallic hull behavior.) Note that the positive value of radical is chosen in Eqs. (9)
and (10). Choosing the negative value would result in the identical solution because the solid layers are finite in the
z-direction. In Eqs. (6)–(8), AðjÞm , BðjÞm , CðjÞm , DðjÞm , EðjÞm , and FðjÞm are the unknown complex wave propagation coefficients whose
solutions we seek.

The acoustic pressure in the fluid medium is governed by the three-dimensional wave equation and is written in
Cartesian coordinates as

@2paðx,y,z,tÞ

@x2
þ
@2paðx,y,z,tÞ

@y2
þ
@2paðx,y,z,tÞ

@z2
�

1

c2
f

@2paðx,y,z,tÞ

@t2
¼ 0, (14)

where pa(x,y,z,t) is the pressure and cf is the real-valued compressional wave speed in the fluid. The pressure field in the
fluid consists of an incoming incident pressure wave (system excitation) applied to the structure at the top (z=c) and an
outgoing scattered wave that propagates in the positive z-direction. Due to the periodicity of the system, the outgoing
pressure wave has the same spatial form as the displacement fields, thus the solution to Eq. (14) is written as

paðx,y,z,tÞ ¼ PIexpð�ig0zÞ expðikxxÞ expðikyyÞ expð�iotÞ

þ
Xm ¼ þ1

m ¼ �1

Rm expðigmzÞ expðikmxÞ expðikyyÞ expð�iotÞ, (15)

where PI is the magnitude of the applied pressure field, Rm are unknown wave propagation coefficients, and gm is the
modified wavenumber associated with the compressional wave in the fluid and is given by

gm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=cf Þ

2
�k2

m�k2
y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f �k2
m�k2

y

q
: (16)

The expression given by Eq. (16) is either purely real or purely imaginary. The positive root of Eq. (16) is associated with
the outgoing radiated compressional wave, and when this term is purely imaginary, the sign of the argument of the series
terms in Eq. (15) is negative, and this corresponds to a spatially decaying wave in the positive z-direction. The relationship
between arrival angles on the plate of an acoustic wave and the x- and y-wavenumbers is determined by

kx ¼ ðo=cf ÞsinðyÞ ¼ kf sinðyÞ (17)

and

ky ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

q
sinðfÞ, (18)

where y is the arrival angle of the acoustic wave with respect to the x-axis and f is the arrival angle with respect to the
y-axis. Note that the expression under the radical in Eq. (18) is always positive, and that the positive root is used for the
analysis. The value of Eq. (18), however, can be negative based on the sign of f. A value of y=f=0 corresponds to a
broadside or boresight wave exciting the system.
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The displacement of any individual rib in the z-direction is modeled using the Timoshenko beam equation, which is

EI
@4szðx,y,tÞ

@y4
� rIþ

rIE

Gk

� �
@4szðx,y,tÞ

@y2@t2
þAr @

2szðx,y,tÞ

@t2
þ
r2I

Gk
@4szðx,y,tÞ

@t4
¼�fzðx,y,tÞþ

EI

GAk
@2fzðx,y,tÞ

@y2
�

rI

GAk
@2fzðx,y,tÞ

@t2
,

(19)

where sz(x,y,t) is the rib displacement in the z-direction, fz(x,y,t) is the force per unit length in the z-direction, E is Young’s
modulus, I is the second moment of area about the x-axis, r is the density, G is the shear modulus, A is the area, and k is the
shear coefficient. Noting that the rib displacement in the z-direction is equal to the plate displacement at z=a in the
z-direction, i.e.

szðx,y,tÞ ¼
Xm ¼ þ1

m ¼ �1

W ð1Þ
m ðaÞexpðikmxÞ expðikyyÞ expð�iotÞ, (20)

yields the solution to the z-directional force in Eq. (19) as

fzðx,y,tÞ ¼ Kz

Xm ¼ þ1

m ¼ �1

W ð1Þ
m ðaÞ expðikmxÞ expðikyyÞ expð�iotÞ (21)

with

Kz ¼
EIk4

y�ðrIþðrIE=GkÞÞo2k2
y�Aro2þðr2I=GkÞo4

�1�ðEI=GAkÞk2
yþðrI=GAkÞo2

, (22)

where Kz has units of stiffness per unit length. Note that the case when the denominator of Eq. (22) equals zero
corresponds to the maximum frequency that the Timoshenko beam equation is considered valid. This frequency limitation
is discussed in more detail in Section 5.

The rotation of any individual rib is modeled using the torsional wave equation, written with the independent variable
as the angle of the rib as

rJ
@2yðx,y,tÞ

@t2
�GJ

@2yðx,y,tÞ

@y2
¼�myðx,y,tÞ, (23)

where y(x,y,t) is the clockwise angle of rotation of the rib about its centroid, my(x,y,t) is the torque per unit length in the
y-direction at the top of the rib, and J is the polar moment of inertia about the y-axis. Rewriting the torque expression as

myðx,y,tÞ ¼
h

2

� �
fxðx,y,tÞ, (24)

where h is the height of the rib and fx(x,y,t) is the force per unit length in the x-direction, and assuming that the rib is
always at a right angle to the bottom of the backing plate, gives the relationship

yðx,y,tÞ ¼
@w1ðx,y,a,tÞ

@x
¼

Xm ¼ þ1

m ¼ �1

ikmW ð1Þ
m ðaÞ expðikmxÞ expðikyyÞ expð�iotÞ (25)

which yields

fxðx,y,tÞ ¼ K̂ x

Xm ¼ þ1

m ¼ �1

ikmW ð1Þ
m ðaÞ expðikmxÞ expðikyyÞ expð�iotÞ (26)

with

K̂ x ¼
2J

h
½o2r�k2

yG�, (27)

where K̂ x has units of stiffness and the caret has been added to this constant because it has different units than the stiffness
constant in the z-direction.

The displacement of any individual rib in the y-direction is modeled using the longitudinal wave equation of a bar,
written as

Ar
@2syðx,y,tÞ

@t2
�AE

@2syðx,y,tÞ

@y2
¼�fyðx,y,tÞ, (28)

where sy(x,y,z) is the rib displacement in the y-direction and fy(x,y,t) is the force per unit length in the y-direction. The rib
displacement in the y-direction is equal to the plate displacement at z=a in the y-direction, thus

syðx,y,tÞ ¼
Xm ¼ þ1

m ¼ �1

V ð1Þm ðaÞ expðikmxÞ expðikyyÞ expð�iotÞ (29)
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and this yields the solution to the y-directional force in Eq. (28) as

fyðx,y,tÞ ¼ Ky

Xm ¼ þ1

m ¼ �1

V ð1Þm ðaÞ expðikmxÞ expðikyyÞ expð�iotÞ (30)

with

Ky ¼ Aro2�AEk2
y , (31)

where Ky has units of stiffness per length. Note that the dynamic beam stiffness expressions K̂ x, Ky, and Kz can change signs
based on the parameters of the beam and that they can be complex quantities if the material properties of the beam are
complex. This typically results when a structural damping model is used which produces a complex Young and shear
modulus of the beam. For the remainder of the paper, the exponential function with respect to time is suppressed in all the
equations.

The solutions to the wave propagation coefficients are determined by formulating the problem using 13 boundary value
equations written in terms of the plates’ displacements and corresponding forcing functions. The system is loaded on the
bottom by the ribs; thus, the normal stress and the shear stresses at this location (z=a) are written using a force balance
between the forces in the ribs and the bottom of the lower plate. Because there are an infinite number of ribs and they each
act as a point force, a Dirac comb function is used to distribute the forces of the ribs discretely in the x-direction.
The normal stress is written as

tzzðx,y,a,tÞ ¼ l1
@u1ðx,y,a,tÞ

@x
þ
@v1ðx,y,a,tÞ

@y
þ
@w1ðx,y,a,tÞ

@z

� �
þ2m1

@w1ðx,y,a,tÞ

@z

¼
Xn ¼ þ1

n ¼ �1

fzðx,y,tÞdðx�nLÞ (32)

and the tangential stresses are written as

tzyðx,y,a,tÞ ¼ m1

@v1ðx,y,a,tÞ

@z
þ
@w1ðx,y,a,tÞ

@y

� �
¼

Xn ¼ þ1

n ¼ �1

fyðx,y,tÞdðx�nLÞ (33)

and

tzxðx,y,a,tÞ ¼ m1

@w1ðx,y,a,tÞ

@x
þ
@u1ðx,y,a,tÞ

@z

� �
¼

Xn ¼ þ1

n ¼ �1

fxðx,y,tÞdðx�nLÞ, (34)

where d(x�nL) is the spatial Dirac delta function, and the subscript 1 corresponds to the backing plate.
The interface between the backing plate and the acoustic coating is modeled using continuity of displacements and

stresses. Continuity of the stress fields at the interface (z=b) yields

l1
@u1ðx,y,b,tÞ

@x
þ
@v1ðx,y,b,tÞ

@y
þ
@w1ðx,y,b,tÞ

@z

� �
þ2m1

@w1ðx,y,b,tÞ

@z

¼ l2
@u2ðx,y,b,tÞ

@x
þ
@v2ðx,y,b,tÞ

@y
þ
@w2ðx,y,b,tÞ

@z

� �
þ2m2

@w2ðx,y,b,tÞ

@z
, (35)

m1

@v1ðx,y,b,tÞ

@z
þ
@w1ðx,y,b,tÞ

@y

� �
¼ m2

@v2ðx,y,b,tÞ

@z
þ
@w2ðx,y,b,tÞ

@y

� �
(36)

and

m1

@w1ðx,y,b,tÞ

@x
þ
@u1ðx,y,b,tÞ

@z

� �
¼ m2

@w2ðx,y,b,tÞ

@x
þ
@u2ðx,y,b,tÞ

@z

� �
, (37)

where the subscript 2 corresponds to the acoustic coating. Continuity of the displacement fields at the interface yields

u1ðx,y,b,tÞ ¼ u2ðx,y,b,tÞ, (38)

v1ðx,y,b,tÞ ¼ v2ðx,y,b,tÞ (39)

and

w1ðx,y,b,tÞ ¼w2ðx,y,b,tÞ: (40)

The top of the acoustic coating is in contact with the fluid, and the normal stress at this location (z=c) is written using a
force balance between the pressure in the fluid and the coating as

tzzðx,y,c,tÞ ¼ l2
@u2ðx,y,c,tÞ

@x
þ
@v2ðx,y,c,tÞ

@y
þ
@w2ðx,y,c,tÞ

@z

� �
þ2m2

@w2ðx,y,c,tÞ

@z

¼�paðx,y,c,tÞ, (41)
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where pa(x,y,c,t) is the pressure field in contact with the top of the plate. Furthermore, this interface satisfies the linear
momentum equation, which relates the normal acceleration of the plate surface to the spatial gradient of the pressure
field by

rf

@2w2ðx,y,c,tÞ

@t2
¼�

@paðx,y,c,tÞ

@z
, (42)

where rf is the density of the fluid. The tangential stresses on the top of the acoustic coating are modeled as free boundary
conditions and are written as

tzyðx,y,c,tÞ ¼ m2

@v2ðx,y,c,tÞ

@z
þ
@w2ðx,y,c,tÞ

@y

� �
¼ 0 (43)

and

tzxðx,y,c,tÞ ¼ m2

@w2ðx,y,c,tÞ

@x
þ
@u2ðx,y,c,tÞ

@z

� �
¼ 0: (44)

3. Analytical solution

The functional form of the displacement fields in Eqs. (6)–(8) are now inserted into the boundary value equations given
by Eqs. (32)–(41) and (43)–(44). Additionally, the pressure field in Eq. (15) and the interface equation listed as Eq. (42) are
utilized, and which directly results in the following equations:

l1

Xm ¼ þ1

m ¼ �1

ikmUð1Þm ðaÞ expðikmxÞþl1iky

Xm ¼ þ1

m ¼ �1

V ð1Þm ðaÞ expðikmxÞ

þðl1þ2m1Þ
Xm ¼ þ1

m ¼ �1

dW ð1Þ
m ðaÞ

d z
expðikmxÞ ¼ Kz

Xn ¼ þ1

n ¼ �1

½
Xm ¼ þ1

m ¼ �1

W ð1Þ
m ðaÞ expðikmxÞ�dðx�nLÞ, (45)

m1

Xm ¼ þ1

m ¼ �1

dV ð1Þm ðaÞ

dz
expðikmxÞþm1iky

Xm ¼ þ1

m ¼ �1

W ð1Þ
m ðaÞ expðikmxÞ ¼ Ky

Xn ¼ þ1

n ¼ �1

½
Xm ¼ þ1

m ¼ �1

V ð1Þm ðaÞ expðikmxÞ�dðx�nLÞ, (46)

m1

Xm ¼ þ1

m ¼ �1

ikmW ð1Þ
m ðaÞ expðikmxÞþm1

Xm ¼ þ1

m ¼ �1

dUð1Þm ðaÞ

dz
expðikmxÞ ¼ K̂ x

Xn ¼ þ1

n ¼ �1

½
Xm ¼ þ1

m ¼ �1

ikmW ð1Þ
m ðaÞ expðikmxÞ�dðx�nLÞ, (47)

l1

Xm ¼ þ1

m ¼ �1

ikmUð1Þm ðbÞ expðikmxÞþl1iky

Xm ¼ þ1

m ¼ �1

V ð1Þm ðbÞ expðikmxÞþðl1þ2m1Þ
Xm ¼ þ1

m ¼ �1

dW ð1Þ
m ðbÞ

dz
expðikmxÞ

¼ l2

Xm ¼ þ1

m ¼ �1

ikmUð2Þm ðbÞ expðikmxÞþl2iky

Xm ¼ þ1

m ¼ �1

V ð2Þm ðbÞ expðikmxÞþðl2þ2m2Þ
Xm ¼ þ1

m ¼ �1

dW ð2Þ
m ðbÞ

dz
expðikmxÞ, (48)

m1

Xm ¼ þ1

m ¼ �1

dV ð1Þm ðbÞ

dz
expðikmxÞþm1iky

Xm ¼ þ1

m ¼ �1

W ð1Þ
m ðbÞ expðikmxÞ

¼ m2

Xm ¼ þ1

m ¼ �1

dV ð2Þm ðbÞ

dz
expðikmxÞþm2iky

Xm ¼ þ1

m ¼ �1

W ð2Þ
m ðbÞ expðikmxÞ, (49)

m1

Xm ¼ þ1

m ¼ �1

ikmW ð1Þ
m ðbÞ expðikmxÞþm1

Xm ¼ þ1

m ¼ �1

dUð1Þm ðbÞ

dz
expðikmxÞ

¼ m2

Xm ¼ þ1

m ¼ �1

ikmW ð2Þ
m ðbÞ expðikmxÞþm2

Xm ¼ þ1

m ¼ �1

dUð2Þm ðbÞ

dz
expðikmxÞ, (50)

Xm ¼ þ1

m ¼ �1

Uð1Þm ðbÞ expðikmxÞ ¼
Xm ¼ þ1

m ¼ �1

Uð2Þm ðbÞ expðikmxÞ, (51)

Xm ¼ þ1

m ¼ �1

V ð1Þm ðbÞ expðikmxÞ ¼
Xm ¼ þ1

m ¼ �1

V ð2Þm ðbÞ expðikmxÞ, (52)

Xm ¼ þ1

m ¼ �1

W ð1Þ
m ðbÞ expðikmxÞ ¼

Xm ¼ þ1

m ¼ �1

W ð2Þ
m ðbÞ expðikmxÞ, (53)
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l2

Xm ¼ þ1

m ¼ �1

ikmUð2Þm ðcÞ expðikmxÞþl2iky

Xm ¼ þ1

m ¼ �1

V ð2Þm ðcÞ expðikmxÞþðl2þ2m2Þ
Xm ¼ þ1

m ¼ �1

dW ð2Þ
m ðcÞ

dz
expðikmxÞ

þ
Xm ¼ þ1

m ¼ �1

o2rf

igm

 !
W ð2Þ

m ðcÞ expðikmxÞ ¼�2PI expðikxxÞ, (54)

m2

Xm ¼ þ1

m ¼ �1

dV ð2Þm ðcÞ

dz
expðikmxÞþm2iky

Xm ¼ þ1

m ¼ �1

W ð2Þ
m ðcÞ expðikmxÞ ¼ 0, (55)

and

m2

Xm ¼ þ1

m ¼ �1

ikmW ð2Þ
m ðcÞ expðikmxÞþm2

Xm ¼ þ1

m ¼ �1

dUð2Þm ðcÞ

dz
expðikmxÞ ¼ 0: (56)

To eliminate the Dirac delta function present in Eqs. (45)–(47), the Fourier series of the Dirac comb function is
written as

Xn ¼ þ1

n ¼ �1

dðx�nLÞ ¼
1

L

Xn ¼ þ1

n ¼ �1

exp
i2pnx

L

� �
: (57)

Furthermore, the identities

Xn ¼ þ1

n ¼ �1

Xm ¼ þ1

m ¼ �1

W ð1Þ
m ðaÞ

V ð1Þm ðaÞ

ikmW ð1Þ
m ðaÞ

8>><
>>:

9>>=
>>; expðikmxÞ

2
664

3
775exp

i2pnx

L

� �
¼

Xn ¼ þ1

n ¼ �1

W ð1Þ
n ðaÞ

V ð1Þn ðaÞ

iknW ð1Þ
n ðaÞ

8>><
>>:

9>>=
>>;

2
664

3
775 Xm ¼ þ1

m ¼ �1

expðikmxÞ (58)

are also applied to Eqs. (45)–(47) to separate the embedded double summation into two multiplicative summations.
A proof of Eq. (58) is given in Appendix A. This modified version of Eqs. (45)–(47), with Eqs. (48)–(56) are all multiplied by
exp(� ikpx) and integrated over [0,L]. Because the exponential functions are orthogonal on this interval, the equations
decouple into sets of m-indexed equations, each one expressed as

l1ikmUð1Þm ðaÞþl1ikyV ð1Þm ðaÞþðl1þ2m1Þ
dW ð1Þ

m ðaÞ

dz
¼

Kz

L

Xn ¼ þ1

n ¼ �1

W ð1Þ
n ðaÞ, (59)

m1

dV ð1Þm ðaÞ

dz
þm1ikyW ð1Þ

m ðaÞ ¼
Ky

L

Xn ¼ þ1

n ¼ �1

V ð1Þn ðaÞ, (60)

m1ikmW ð1Þ
m ðaÞþm1

dUð1Þm ðaÞ

dz
¼

K̂ x

L

Xn ¼ þ1

n ¼ �1

iknW ð1Þ
n ðaÞ, (61)

l1ikmUð1Þm ðbÞþl1ikyV ð1Þm ðbÞþðl1þ2m1Þ
dW ð1Þ

m ðbÞ

dz
�l2ikmUð2Þm ðbÞ�l2ikyV ð2Þm ðbÞ�ðl2þ2m2Þ

dW ð2Þ
m ðbÞ

d z
¼ 0, (62)

m1

dV ð1Þm ðbÞ

dz
þm1ikyW ð1Þ

m ðbÞ�m2

dV ð2Þm ðbÞ

dz
�m2ikyW ð2Þ

m ðbÞ ¼ 0, (63)

m1ikmW ð1Þ
m ðbÞþm1

dUð1Þm ðbÞ

dz
�m2ikmW ð2Þ

m ðbÞ�m2

dUð2Þm ðbÞ

dz
¼ 0, (64)

Uð1Þm ðbÞ�Uð2Þm ðbÞ ¼ 0, (65)

V ð1Þm ðbÞ�V ð2Þm ðbÞ ¼ 0, (66)

W ð1Þ
m ðbÞ�W ð2Þ

m ðbÞ ¼ 0, (67)

l2ikmUð2Þm ðcÞþl2ikyV ð2Þm ðcÞþðl2þ2m2Þ
dW ð2Þ

m ðcÞ

dz
þ

o2rf

igm

 !
W ð2Þ

m ðcÞ ¼
�2PI , m¼ 0,

0, ma0:

(
(68)

m2

dV ð2Þm ðcÞ

dz
þm2ikyW ð2Þ

m ðcÞ ¼ 0, (69)

and

m2ikmW ð2Þ
m ðcÞþm2

dUð2Þm ðcÞ

dz
¼ 0: (70)
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Note that the left-hand side of Eqs. (59)–(70) are m indexed and the right-hand side of Eqs. (59)–(61) are n summed.
Physically, the left-hand side of these equations model the acoustic coating and backing plate, the right-hand side of
Eqs. (59)–(61) models the ribs, and the right-hand side of Eq. (68) models the incoming acoustic energy.

The functional forms of the displacements given in Eqs. (6)–(8) are inserted into Eqs. (59)–(70) and the resulting
algebraic matrix equation for each set of m-indexed coefficients is

½AðkmÞ�fxmg ¼
Xn ¼ þ1

n ¼ �1

½FðknÞ�fxngþ
fpg, m¼ 0,

0, ma0,

(
(71)

where [A(km)] is a 12�12 matrix that models the dynamics of the backing plate and the acoustic coating, {xm} is the 12�1
vector of unknown wave propagation coefficients, [F(kn)] is the 12�12 matrix that models the dynamic interaction of the
ribs and the backing plate, and {p} is the 12�1 vector that models the incoming acoustic wave acting on the structure.
The entries of the matrices and vectors in Eq. (71) are listed in Appendix B. Eq. (71) is now written for all values of the index
m and the results are rewritten in global matrix form. This mathematical process is previously described [20] and this
results in

Â x̂ ¼ F̂ x̂þ p̂, (72)

where Â is a block diagonal matrix and is written as

Â ¼

& ^ c

Aðk�1Þ 0 0

� � � 0 Aðk0Þ 0 � � �

0 0 Aðk1Þ

c ^ &

2
6666664

3
7777775
: (73)

F̂ is a rank deficient, block partitioned matrix and is equal to

F̂ ¼

& ^ c

Fðk�1Þ Fðk0Þ Fðk1Þ

� � � Fðk�1Þ Fðk0Þ Fðk1Þ � � �

Fðk�1Þ Fðk0Þ Fðk1Þ

c ^ &

2
6666664

3
7777775
: (74)

p̂ is the system excitation vector and is written as

p̂ ¼ ½ � � � 0T pT 0T
� � � �T (75)

and x̂ is the vector that contains the unknown wave propagation coefficients and is equal to

x̂ ¼ ½ � � � fx�1g
T fx0g

T fx1g
T � � � �T, (76)

where

fx0g ¼ Að1Þ0 Bð1Þ0 Cð1Þ0 Dð1Þ0 Eð1Þ0 Fð1Þ0 Að2Þ0 Bð2Þ0 Cð2Þ0 Dð2Þ0 Eð2Þ0 Fð2Þ0

n oT
: (77)

The 0 term in Eq. (73) is a 12�12 matrix with all zero entries and the 0 term in Eq. (75) is a 12�1 vector with all zero
entries. The solution to the wave propagation coefficients is now found by truncating the matrices in Eq. (72) to a finite
number of terms and solving

x̂ ¼ ½Â�F̂��1p̂: (78)

Once these are known, the displacement field of the system in the spatial domain can be determined using Eqs. (2)–(8).
Furthermore, the stress distribution in the backing plate, acoustic coating and the scattered acoustic field can be computed.

4. Model validation

The elastic model that has been developed in Sections 2 and 3 can be compared to a fluid-loaded, ribbed, Bernoulli–
Euler thin plate model that has been previously developed [7–9]. This will provide validation of the model for low
frequencies, low wavenumbers, and small plate thicknesses. This Bernoulli–Euler model, however, only incorporates
flexural wave behavior, making the model assumptions invalid at higher frequencies and wavenumbers. The thin plate
model has one degree-of-freedom that is displacement in the z-direction and is a constant value across the thickness of the
plate. This displacement equation is written as

wðx,yÞ ¼
Xm ¼ þ1

m ¼ �1

WmexpðikmxÞ expðikyyÞ (79)
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and this displacement field can be determined by

fwg ¼ ½TþKþR��1ffg, (80)

where

fwg ¼ � � � W�1 W0 W1 � � �
� �T

, (81)

½T� ¼

& ^ c

T�1 0 0

� � � 0 T0 0 � � �

0 0 T1

c ^ &

2
6666664

3
7777775

, (82)

½K� ¼
Kz

L

� �
& ^ c

1 1 1

� � � 1 1 1 � � �

1 1 1

c ^ &

2
6666664

3
7777775

, (83)

½R� ¼
hK̂ x

2L

 ! & ^ c

k�1k�1 k�1k0 k�1k1

� � � k0k�1 k0k0 k0k1 � � �

k1k�1 k1k0 k1k1

c ^ &

2
6666664

3
7777775

(84)

and

ffg ¼ � � � 0 �2PI 0 � � �
� �T

: (85)

In Eq. (82), the indexed entry is

Tn ¼Dðk4
nþk2

nk2
yþk4

y Þ�rto2þðrfo
2=ignÞ, (86)

with

D¼
Et3

12ð1�u2Þ
, (87)

where t is the thickness of the plate, E is Young’s modulus, and u is Poisson’s ratio.
Fig. 2 is a plot of the magnitude of the transfer function of the plate normal displacement (w) divided by the amplitude

of the applied incident pressure field (PI) versus spatial position in the x-direction at a frequency of 50 Hz, an x-direction
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wavenumber kx of 0.0209 rad m�1 (y=301), and a y-direction wavenumber ky of 0.0256 rad m�1 (f=451). The solid line is
the elastic plate theory developed above and corresponds to Eq. (4) and the dot symbols are the Bernoulli–Euler plate
theory and corresponds to Eq. (79). This example was generated using an extremely low frequency and small
wavenumbers because this is a region in which the thick plate model should theoretically agree with the thin plate model.
The following parameters were used for the plate: total plate thickness t is 0.01 m, plate densities r1 and r2 are
1200 kg m�3, Lamé constants l1 and l2 are 9.31�108 N m�2, Lamé constants m1 and m2 are 1.03�108 N m�2, fluid density
rf is 1025 kg m�3, fluid compressional wave speed cf is 1500 m s�1 and spatial location y is 0. The following parameters
were used for the ribs: width is 0.0064 m, height is 0.1016 m, Young’s modulus is 200�109 N m�2, Poisson’s ratio is 0.3,
density is 7860 kg m�3, shear coefficient is 0.833 and rib separation distance L is 1.0 m. These parameters result in
computed dynamic rib stiffnesses K̂ x equal to 7.955�103 N m�1, Ky equal to 4.159�105 N m�2, and Kz equal to
5.005�105 N m�2. For the thick plate model, the plate interface region location b is �0.006 m and the output location is
z=�t/2, which is �0.005 m. These parameters produced a dimensionless fluid wavenumber multiplied by plate height
(kfh) equal to 0.0021, which is a very small number where Bernoulli-Euler plate theory is considered accurate. The elastic
plate model was truncated to 15 modes that produced a 120-by-120 system matrix and the thin plate model was truncated
to 201 modes. There is almost total agreement between the two models over all of the abscissa values. To illustrate the
convergence of the individual terms from the series solutions in Eqs. (2)–(4), each term is plotted versus the index number
in Fig. 3. In this plot, the square markers are the terms W ð1Þ

m ðaÞ=PI , the circular markers are the terms Uð1Þm ðaÞ=PI , the
triangular markers are the terms V ð1Þm ðaÞ=PI , and the dashed line is the working precision of the computation using 64-bit
arithmetic numbers. For this validation problem, there is 46.2 dB of falloff for Uð1Þm ðaÞ=PI , a 57.1 dB of falloff for V ð1Þm ðaÞ=PI , and
a 57.8 dB of falloff of W ð1Þ

m ðaÞ=PI between the 3rd and 15th mode. For comparison, a 1/m2 convergent series has a 28.0 dB
falloff between the 3rd and 15th term. Other tests of these series using various parameters resulted in similar behavior,
however, as frequency increased, more terms were needed to insure the sum of the series has converged.

5. An example problem

An example problem is now formulated and discussed. This problem consists of a 0.0065-m (0.25-inch) thick aluminum
plate coated with a 0.0254-m (1-inch) thick urethane polymer coating. This example was generated with the following
plate parameters: aluminum Lamé constant l1 is 5.11�1010 N m�2, Lamé constant m1 is 2.63�1010 N m�2, density r1 is
2710 kg m�3, urethane Lamé constant l2 is 2.09�109 N m�2, Lamé constant m2 is 7.14�107 N m�2, density r2

is 1110 kg m�3, urethane structural loss factor is 0.05, fluid-compressional wave speed cf is 1475 m s�1 and fluid density
rf is 1025 kg m�3. The following parameters were used for the ribs: width is 0.0064 m, height is 0.1524 m, Young’s modulus
is 70�109 N m�2, Poisson’s ratio is 0.33, density is 2710 kg m�3, shear coefficient is 0.833 and rib separation distance L is
1.0 m. No structural loss factors are used for the hull or ribs because they are typically metallic for a marine vehicle
and have an extremely low loss factor, however, this term can be included in the analysis using complex material
properties for these components. For this example, the material properties are considered constant over all frequencies
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that the analysis is undertaken. Frequency dependent material properties can easily be incorporated into the model if
needed. The problem is investigated from three technical standpoints: (1) the dynamic response of the structure, (2) the
reception of an acoustic signal from within the structure, and (3) the scattered pressure field of an acoustic emission
directed at the system.

Fig. 4 is a plot of the normal stress in the z-direction versus x-spatial position and frequency. This plot is at the midpoint
of the combined plate system which is z=�0.0159 m (the top of the plate system is z=0), the value of y is 0, and the
incoming acoustic wave has wavenumbers of kx=0 and ky=0. The scale of the plot is power in decibels and the units are
dimensionless. In addition to the normal stress in the z-direction, the normal stresses in the x- and y-directions, the shear
stresses in the xy-, xz- and yz-directions, and the displacements in the x-, y- and z-directions are available from the model.
This provides a three-dimensional elastic analysis of this system. Note that if there were no ribs present in the system, this
plot would be constant in the x-spatial position direction. The ribs introduce dynamic effects and this results in spatially
varying stress and displacement fields. This amount of variation is dependent on the stiffness of the plate system with
respect to the stiffness and spacing of the ribs.

The reception of an acoustic signal in the urethane can be accomplished by an internal array of sensors embedded in the
coating. For the above example problem, an eight-element linear array of sensors that has an element-to-element spacing
of 0.2 m and the first sensor located at x=0.02 m is analyzed. The array is oriented such that it is parallel to the x-axis.
The length of this array makes it cross one rib in the structure, and the effect on the response of this crossing must be
incorporated into the analysis. The magnitude of the response of two points at a distance L apart are identical; however, the
phase angle must be adjusted to account for the orientation of the acoustic wave to the structure. This will result in a phase
angle difference of two points a distance L apart of kxL radians. Fig. 5 is a plot of the normalized summed array response
versus arrival angle at 3600 Hz, which is approximately the Nyquist frequency of the array. The summed array response
was computed using

Bðkx,oÞ ¼
XN

n ¼ 1

Pðxn,0,zs,oÞ expð�iksxnÞ, (88)

where P is the field variable of the sensor response, N is the number of sensors in the array, ks is the steered wavenumber
of the array with respect to the x-axis, and xn is the location of the nth sensor. In Fig. 5, the solid line in the top plot
corresponds to an array of z-direction displacement type sensors (typically an accelerometer) and the solid line in the
bottom plot corresponds to an array of z-direction stress type sensors (typically a hydrophone). In both the top and the
bottom plots, the dashed line corresponds to an array response in the system without ribs. In this example, the incoming
acoustic wave has wavenumbers of kx=0 and ky=0. The plots are not symmetric about the steer angle of 01 because the
array is not symmetric with respect to the structure. For this example, the interaction of the ribs with the sensor field is
significant for the stress sensors, as the array response produces higher sidelobe levels than an ideal array would produce.
There is a smaller effect of the ribs on the summed array response of displacement sensors, although there is still some
increase in the sidelobe levels. Note that the array analysis can also be conducted using a planar array embedded in the
coating, and the resulting beam pattern would be two-dimensional.
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In underwater structures, the scattered pressure field is an important quantity for quiet operation. The scattered
pressure field divided by the incident pressure field is given by the expression

Psðx,y,oÞ
PI

¼ expðikxxÞ expðikyyÞþ
Xm ¼ þ1

m ¼ �1

o2rf

igm

W ð2Þ
m ð0Þ expðikmxÞ expðikyyÞ, (89)

where Ps(x,y,o) is the scattered pressure field in the spatial-frequency domain, the first term on the right-hand side is the
reflected pressure field, and the second term on the right-hand side is the radiated pressure field caused by normal
displacement of the plate. Fig. 6 is a plot of the scattered pressure field divided by the incident pressure field versus
x-spatial position and frequency. The incoming acoustic wave has wavenumbers of kx=0 and ky=0. The scale of the plot is
power in decibels and the units are dimensionless. The scattered pressure field also has spatial variation in the x-direction.

The above simulations (and others) were run using all three nonzero dynamic stiffness values. These were compared to
simulations where K̂ x ¼ Ky ¼ 0 and this resulted in nearly identical values for the displacements, stresses and scattered
pressure fields. This result makes sense physically because the dynamic stiffnesses K̂ x and Ky act on the in-plane
displacement fields of the plates while Kz acts on the normal displacement field. Because the plate system is much stiffer
in-plane, the contribution of stiffeners in these directions will be minimal. Utilizing the fact that the dominant beam
stiffness effects are in the z-direction of the system, an upper frequency limit of the model can be determined. For the
Timoshenko beam, the upper frequency is usually given by

oMAX ¼

ffiffiffiffiffiffiffiffiffiffi
kAG

rI

s
: (90)

For a rectangular beam, this expression can be approximated by

fMAX �
cs

2h
, (91)

where fMAX has units of Hz, cs is the shear wave speed in the beam and h is the height of the beam. For the example problem
presented here, this upper frequency limit is computed to be 10,290 Hz. The plate equations without the ribs have no upper
frequency bound as these equations of motion are fully elastic.

ARTICLE IN PRESS

−80 −60 −40 −20 0 20 40 60 80
−30

−20

−10

0

Steer Angle (degrees)

Su
m

m
ed

 A
rr

ay
 R

es
po

ns
e 

(d
B

)

−80 −60 −40 −20 0 20 40 60 80
−30

−20

−10

0

Steer Angle (degrees)

Su
m

m
ed

 A
rr

ay
 R

es
po

ns
e 

(d
B

)

Fig. 5. Summed acoustic response versus steer angle for an array of (a) z-direction displacement sensors (____) and (b) z-direction normal stress sensors

(____) compared to thick plate system without ribs (_ _ _ _).

A.J. Hull, J.R. Welch / Journal of Sound and Vibration 329 (2010) 4192–42114204



6. Conclusions

An elastic analytical model of a system that consists of a ribbed plate covered by a fluid-loaded acoustical coating has
been derived. This model was developed so that structural acoustic modeling of such a system could be undertaken at
higher wavenumbers and frequencies, rather than the previously available low frequency and low wavenumber models.
The new model has been shown to agree with previously developed thin plate solutions to the problem at low frequency.
An example problem was developed to illustrate high-frequency behavior and an analysis of the dynamic response,
acoustic reception, and scattered acoustic field is included. It was shown that for this example, the ribs have a significant
effect on the high frequency dynamic response of the structure.
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Appendix A. Double summation identities

A proof of the double summation identities used in Eq. (58) is developed here. Starting with the series Gm (where Gm

equals either W ð1Þ
m ðaÞ, V ð1Þm ðaÞ, or ikmW ð1Þ

m ðaÞ), the following expression is written as:

Xn ¼ þ1

n ¼ �1

½
Xm ¼ þ1

m ¼ �1

Gm expðikmxÞ�exp
i2pnx

L

� �
: (A.1)

Using the definition of km from Eq. (5) yields

expðikxxÞ
Xn ¼ þ1

n ¼ �1

Xm ¼ þ1

m ¼ �1

Gm exp
i2pmx

L

� �" #
exp

i2pnx

L

� �
: (A.2)

Expanding the m indexed series results in

expðikxxÞ
Xn ¼ þ1

n ¼ �1

� � � þG�1exp
i2pð�1Þx

L

� �
þG0 exp

i2p0x

L

� �
þG1 exp

i2p1x

L

� �
þ � � �

� �
exp

i2pnx

L

� �
: (A.3)

Next, expanding the n indexed series yields

expðikxxÞ � � � þ � � � þG�1 exp
i2pð�1Þx

L

� �
þG0 exp

i2p0x

L

� �
þG1 exp

i2p1x

L

� �
þ � � �

� �
exp

i2pð�1Þx

L

� �	
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þ � � � þG�1 exp
i2pð�1Þx

L

� �
þG0 exp

i2p0x

L

� �
þG1 exp

i2p1x

L

� �
þ � � �

� �
exp

i2p0x

L

� �

þ � � � þG�1 exp
i2pð�1Þx

L

� �
þG0 exp

i2p0x

L

� �
þG1 exp

i2p1x

L

� �
þ � � �

� �
exp

i2p1x

L

� �
þ � � �



: (A.4)

Incorporating the outer exponentials into the inner exponentials gives

expðikxxÞ � � � þ � � � þG�1 exp
i2pð�2Þx

L

� �
þG0 exp

i2pð�1Þx

L

� �
þG1 exp

i2p0x

L

� �
þ � � �

� �	

þ � � � þG�1 exp
i2pð�1Þx

L

� �
þG0 exp

i2p0x

L

� �
þG1 exp

i2p1x

L

� �
þ � � �

� �

þ � � � þG�1 exp
i2p0x

L

� �
þG0 exp

i2p1x

L

� �
þG1 exp

i2p2x

L

� �
þ � � �

� �
þ � � �



: (A.5)

Summing the above expression diagonally using similar exponentials results in

expðikxxÞ � � � þ
Xn ¼ þ1

n ¼ �1

Gn exp
i2pð�1Þx

L

� �
þ

Xn ¼ þ1

n ¼ �1

Gn exp
i2pð0Þx

L

� �
þ

Xn ¼ þ1

n ¼ �1

Gn exp
i2pð1Þx

L

� �
þ � � �

" #
: (A.6)

Factoring out the Gn series yields the expression

expðikxxÞ
Xn ¼ þ1

n ¼ �1

Gn � � � þexp
i2pð�1Þx

L

� �
þexp

i2pð0Þx
L

� �
þexp

i2pð1Þx
L

� �
þ � � �

� �
(A.7)

which can be rewritten as

expðikxxÞ½
Xn ¼ þ1

n ¼ �1

Gn�
Xm ¼ þ1

m ¼ �1

exp
i2pmx

L

� �
: (A.8)

Finally, incorporating the leading exponential into the m indexed series gives the expression

½
Xn ¼ þ1

n ¼ �1

Gn�
Xm ¼ þ1

m ¼ �1

expðikmxÞ: (A.9)

Appendix B. Matrix and vector entries

The entries of the matrixes and vectors in Eq. (71) are listed below. Without loss of generality, the top of the top plate is
defined as z=c=0. For the [Akn] matrix, the nonzero entries are

a1,1 ¼ f�l1½ðað1Þn Þ
2
þk2

nþk2
y Þ��2m1ðað1Þn Þ

2
g cosðað1Þn aÞ,

a1,2 ¼ f�l1½ðað1Þn Þ
2
þk2

nþk2
y Þ��2m1ðað1Þn Þ

2
gsinðað1Þn aÞ,

a1,3 ¼ 2im1b
ð1Þ
n ky sinðbð1Þn aÞ,

a1,4 ¼�2im1b
ð1Þ
n ky cosðbð1Þn aÞ,

a1,5 ¼�2im1b
ð1Þ
n kn sinðbð1Þn aÞ,

a1,6 ¼ 2im1b
ð1Þ
n kn cosðbð1Þn aÞ,

a2,1 ¼�2im1að1Þn ky sinðað1Þn aÞ,

a2,2 ¼ 2im1að1Þn ky cosðað1Þn aÞ,

a2,3 ¼�m1½ðb
ð1Þ
n Þ

2
þk2

n�k2
y � cosðbð1Þn aÞ,

a2,4 ¼�m1½ðb
ð1Þ
n Þ

2
þk2

n�k2
y � sinðbð1Þn aÞ,

a2,5 ¼�2m1kykn cosðbð1Þn aÞ,

a2,6 ¼�2m1kykn sinðbð1Þn aÞ,

a3,1 ¼�2im1að1Þn kn sinðað1Þn aÞ,
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a3,2 ¼ 2im1að1Þn kn cosðað1Þn aÞ,

a3,3 ¼ 2m1knky cosðbð1Þn aÞ,

a3,4 ¼ 2m1knky sinðbð1Þn aÞ,

a3,5 ¼ m1½ðb
ð1Þ
n Þ

2
�k2

nþk2
y � cosðbð1Þn aÞ,

a3,6 ¼ m1½ðb
ð1Þ
n Þ

2
�k2

nþk2
y � sinðbð1Þn aÞ,

a4,1 ¼ f�l1½ðað1Þn Þ
2
þk2

nþk2
y Þ��2m1ðað1Þn Þ

2
g cosðað1Þn bÞ,

a4,2 ¼ f�l1½ðað1Þn Þ
2
þk2

nþk2
y Þ��2m1ðað1Þn Þ

2
g sinðað1Þn bÞ,

a4,3 ¼ 2im1b
ð1Þ
n ky sinðbð1Þn bÞ,

a4,4 ¼�2im1b
ð1Þ
n ky cosðbð1Þn bÞ,

a4,5 ¼�2im1b
ð1Þ
n kn sinðbð1Þn bÞ,

a4,6 ¼ 2im1b
ð1Þ
n kn cosðbð1Þn bÞ,

a4,7 ¼ fl2½ðað2Þn Þ
2
þk2

nþk2
y Þ�þ2m2ðað2Þn Þ

2
g cosðað2Þn bÞ,

a4,8 ¼ fl2½ðað2Þn Þ
2
þk2

nþk2
y Þ�þ2m2ðað2Þn Þ

2
g sinðað2Þn bÞ,

a4,9 ¼�2im2b
ð2Þ
n ky sinðbð2Þn bÞ,

a4,10 ¼ 2im2b
ð2Þ
n ky cosðbð2Þn bÞ,

a4,11 ¼ 2im2b
ð2Þ
n kn sinðbð2Þn bÞ,

a4,12 ¼�2im2b
ð2Þ
n kn cosðbð2Þn bÞ,

a5,1 ¼�2im1að1Þn ky sinðað1Þn bÞ,

a5,2 ¼ 2im1að1Þn ky cosðað1Þn bÞ,

a5,3 ¼�m1½ðb
ð1Þ
n Þ

2
þk2

n�k2
y � cosðbð1Þn bÞ,

a5,4 ¼�m1½ðb
ð1Þ
n Þ

2
þk2

n�k2
y � sinðbð1Þn bÞ,

a5,5 ¼�2m1kykn cosðbð1Þn bÞ,

a5,6 ¼�2m1kykn sinðbð1Þn bÞ,

a5,7 ¼ 2im2að2Þn ky sinðað2Þn bÞ,

a5,8 ¼�2im2að2Þn ky cosðað2Þn bÞ,

a5,9 ¼ m2½ðb
ð2Þ
n Þ

2
þk2

n�k2
y � cosðbð2Þn bÞ,

a5,10 ¼ m2½ðb
ð2Þ
n Þ

2
þk2

n�k2
y � sinðbð2Þn bÞ,

a5,11 ¼ 2m2kykn cosðbð2Þn bÞ,

a5,12 ¼ 2m2kykn sinðbð2Þn bÞ,

a6,1 ¼�2im1að1Þn kn sinðað1Þn bÞ,
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a6,2 ¼ 2im1að1Þn kn cosðað1Þn bÞ,

a6,3 ¼ 2m1knky cosðbð1Þn bÞ,

a6,4 ¼ 2m1knky sinðbð1Þn bÞ,

a6,5 ¼ m1½ðb
ð1Þ
n Þ

2
�k2

nþk2
y � cosðbð1Þn bÞ,

a6,6 ¼ m1½ðb
ð1Þ
n Þ

2
�k2

nþk2
y � sinðbð1Þn bÞ,

a6,7 ¼ 2im2að2Þn kn sinðað2Þn bÞ,

a6,8 ¼�2im2að2Þn kn cosðað2Þn bÞ,

a6,9 ¼�2m2knky cosðbð2Þn bÞ,

a6,10 ¼�2m2knky sinðbð2Þn bÞ,

a6,11 ¼�m2½ðb
ð2Þ
n Þ

2
�k2

nþk2
y � cosðbð2Þn bÞ,

a6,12 ¼�m2½ðb
ð2Þ
n Þ

2
�k2

nþk2
y � sinðbð2Þn bÞ,

a7,1 ¼ ikn cosðað1Þn bÞ,

a7,2 ¼ ikn sinðað1Þn bÞ,

a7,3 ¼
knky

bð1Þn

sinðbð1Þn bÞ,

a7,4 ¼
�knky

bð1Þn

cosðbð1Þn bÞ,

a7,5 ¼ bð1Þn þ
k2

y

bð1Þn

 !
sinðbð1Þn bÞ,

a7,6 ¼� bð1Þn þ
k2

y

bð1Þn

 !
cosðbð1Þn bÞ,

a7,7 ¼�ikn cosðað2Þn bÞ,

a7,8 ¼�ikn sinðað2Þn bÞ,

a7,9 ¼
�knky

bð2Þn

sinðbð2Þn bÞ,

a7,10 ¼
knky

bð2Þn

cosðbð2Þn bÞ,

a7,11 ¼� bð2Þn þ
k2

y

bð2Þn

 !
sinðbð2Þn bÞ,

a7,12 ¼ bð2Þn þ
k2

y

bð2Þn

 !
cosðbð2Þn bÞ,

a8,1 ¼ iky cosðað1Þn bÞ,

a8,2 ¼ iky sinðað1Þn bÞ,
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a8,3 ¼� bð1Þn þ
k2

n

bð1Þn

 !
sinðbð1Þn bÞ,

a8,4 ¼ bð1Þn þ
k2

n

bð1Þn

 !
cosðbð1Þn bÞ,

a8,5 ¼
�knky

bð1Þn

sinðbð1Þn bÞ,

a8,6 ¼
knky

bð1Þn

cosðbð1Þn bÞ,

a8,7 ¼�iky cosðað2Þn bÞ,

a8,8 ¼�iky sinðað2Þn bÞ,

a8,9 ¼ bð2Þn þ
k2

n

bð2Þn

 !
sinðbð2Þn bÞ,

a8,10 ¼� bð2Þn þ
k2

n

bð2Þn

 !
cosðbð2Þn bÞ,

a8,11 ¼
knky

bð2Þn

sinðbð2Þn bÞ,

a8,12 ¼
�knky

bð2Þn

cosðbð2Þn bÞ,

a9,1 ¼�að1Þn sinðað1Þn bÞ,

a9,2 ¼ að1Þn cosðað1Þn bÞ,

a9,3 ¼�iky cosðbð1Þn bÞ,

a9,4 ¼�iky sinðbð1Þn bÞ,

a9,5 ¼ ikn cosðbð1Þn bÞ,

a9,6 ¼ ikn sinðbð1Þn bÞ,

a9,7 ¼ að2Þn sinðað2Þn bÞ,

a9,8 ¼�að2Þn cosðað2Þn bÞ,

a9,9 ¼ iky cosðbð2Þn bÞ,

a9,10 ¼ iky sinðbð2Þn bÞ,

a9,11 ¼�ikn cosðbð2Þn bÞ,

a9,12 ¼�ikn sinðbð2Þn bÞ,

a10,7 ¼�l2½ðað2Þn Þ
2
þk2

nþk2
y Þ��2m2ðað2Þn Þ

2,

a10,8 ¼
o2rfa

ð2Þ
n

ign

,

a10,9 ¼
�o2rf ky

gn

,
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a10,10 ¼�2im2b
ð2Þ
n ky,

a10,11 ¼
o2rf kn

gn

,

a10,12 ¼ 2im2b
ð2Þ
n kn,

a11,8 ¼ 2im2að2Þn ky,

a11,9 ¼�m2ðb
ð2Þ
n þk2

n�k2
y Þ,

a11,11 ¼�2m2knky,

a12,8 ¼ 2im2að2Þn kn,

a12,9 ¼ 2m2knky,

and

a12,11 ¼ m2½ðb
ð2Þ
n Þ

2
�k2

nþk2
y �:

The nonzero entries of the ½FðknÞ� matrix are

f1,1 ¼�ðKz=LÞað1Þn sinðað1Þn aÞ,

f1,2 ¼ ðKz=LÞað1Þn cosðað1Þn aÞ,

f1,3 ¼�ðKz=LÞiky cosðbð1Þn aÞ,

f1,4 ¼�ðKz=LÞiky sinðbð1Þn aÞ,

f1,5 ¼ ðKz=LÞikn cosðbð1Þn aÞ,

f1,6 ¼ ðKz=LÞikn sinðbð1Þn aÞ:

f2,1 ¼ ðKy=LÞiky cosðað1Þn aÞ,

f2,2 ¼ ðKy=LÞiky sinðað1Þn aÞ,

f2,3 ¼�ðKy=LÞ bð1Þn þ
k2

n

bð1Þn

 !
sinðbð1Þn aÞ,

f2,4 ¼ ðKy=LÞ bð1Þn þ
k2

n

bð1Þn

 !
cosðbð1Þn aÞ,

f2,5 ¼�ðKy=LÞ
knky

bð1Þn

sinðbð1Þn aÞ,

f2,6 ¼ ðKy=LÞ
knky

bð1Þn

cosðbð1Þn aÞ,

f3,1 ¼�ðiknK̂ x=LÞað1Þn sinðað1Þn aÞ,

f3,2 ¼ ðiknK̂ x=LÞað1Þn cosðað1Þn aÞ,

f3,3 ¼�ðiknK̂ x=LÞiky cosðbð1Þn aÞ,

f3,4 ¼�ðiknK̂ x=LÞiky sinðbð1Þn aÞ,

f3,5 ¼ ðiknK̂ x=LÞikn cosðbð1Þn aÞ,

and

f3,6 ¼ ðiknK̂ x=LÞikn sinðbð1Þn aÞ:
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The entries of the p vector are

p¼ ½0 0 0 0 0 0 0 0 0 �2PI 0 0 �T:
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